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Given a space-time M and a point p in M, it is shown that, if the locus of first 
conjugate points of p along future-directed null geodesics consists of a single 
point, then M admits a compact  (S  3) spacelike hypersurface. If in addition the 
null geodesics do not intersect before focusing, then, in a simply connected 
space-time, the spacelike hypersurface is a partial Cauchy surface. 

1. INTRODUCTION 

It is known that the existence of conjugate points I is a generic feature of 
space-times. Propositions 4.4.2 and 4.4.5 in Hawking and Ellis (1973) show 
that if physically reasonable energy conditions are satisfied then every 
causal geodesic which passes through a region with matter will either have a 
pair of conjugate points or be incomplete. The conjugate locus of a point p in 
a space-time M is defined as the set of points in M which are conjugate to p 
along some geodesic. In this paper we will be concerned with the structure 
of the conjugate locus and its implications on the topology and causal 
structure of the space-time. Specifically we consider the first null conjugate 
locus (FNCL) which is defined as the set of first 2 conjugate points to p 
along future-directed null geodesics. One could of course also define the 
FNCL for past-directed null geodesics. 

The structure of the FNCL is also of great interest because of the 
connection between conjugate points and the global rotation of the universe 
discussed by the author in Rosquist (1980). 

~If 7 (v)  is a geodesic with tangent vector K '~ then q is conjugate to p if there is a nontrivial 
solution to the geodesic deviation equations D2V~/dv2 = - R"b,.aKbV"K a which vanishes at 
both p and q. 

2A first conjugate point (if any) always exists [see Rosquist (1982) for an explanation of this 
factl. 

971 

0020-7748/83/1100-0971 $03.00/0 '~'~ 1983 Plenum Publishing Corporation 



972 Rosquist 

In the closed Friedmann models the FNCL consists of a single point. 
On the other hand, the FNCL in Grdel 's  universe contains a smooth closed 
nongeodesic null curve (Hawking and Ellis, 1973). The existence of such a 
curve implies that there are closed timelike lines in the model. In a general 
four-dimensional space-time the FNCL will be a two-dimensional surface 
with cusps. The classification of possible FNCLs in a space-time is an open 
problem. In this paper we deal exclusively with the case when all future- 
directed null geodesics through a point p converge to a single point, that 
point being the first conjugate point to p along all the null geodesics. This 
means that the FNCL of p reduces to a point. In that case it turns out that 
the space-time admits a compact spacelike hypersurface S which is topologi- 
cally a 3-sphere. Furthermore, if the null geodesics do not intersect before 
the FNCL, then, if the space-time is simply connected, S is a partial Cauchy 
surface) The purpose of this paper is to prove these statements. It is shown 
in Rosquist (1982) that the assumption that the FNCL is a single point is 
satisfied in the case of isotropic focusing. 

2. PRELIMINARIES 

We study a space-time M which is a four-dimensional connected C ~ 
Hausdorff  manifold with a C ~ time-oriented Lorentz metric g. We use the 
notations and conventions of Hawking and Ellis (1973) unless otherwise 
stated. 

Definition 2.1. A point q in M is an absolute focusing point of p in M if 
all future-directed null geodesics through p meet at q. If q is the first 
conjugate point to p along all null geodesics through p, then q is a good 
absolute focusing point of p. 

The requirement in Definition 2.1. that a point has conjugate points in 
all null directions is a slightly stronger condition than to demand that any 
null geodesic has a pair of conjugate points. 

The closed Friedmann models furnish an example of a class of space- 
times with good absolute focusing points while Grdel 's  model (Hawking 
and Ellis, 1973, p. 168) with one spacelike dimension suppressed exhibits 
absolute focusing points which are not good. 

Let us introduce some notation. If r ~ M let N + C T r (or N 7 C Tr) 
denote the set of future- (or past-) directed null vectors in Tr. Beside the 
space-time metric g we also use a natural Euclidean metric in T r to define 

~A partial Cauchy surface is a spacelike hypersurface which no causal curve intersects more 
than once. 
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the unit 3-sphere Sr c T r. The Euclidean metric is defined by first choosing a 
Lorentz frame for g [i.e., gab = d i a g ( -  1, + I, + 1, + 1); a, b = 0, 1,2,3] and 
then change the sign of g00. Further let P: T r - { 0 } - - ,  S r be the natural 
projection onto S r and define Ur + --  P ( N  + ), U r --  P ( N  r ). The set U + C T r 
represents the future-directed null geodesics through r. It is diffeomorphic 
to the 2-sphere. 

The future null cone at p can be represented by a two-parameter 
smooth variation a: I X Up + ~ M, a = a(v, ~), v ~ I, ~ E Up+, where I = [0, 1] 
and v is an affine parameter  along the null geodesics. Then for an arbitrary 
fixed ~, v-~ a(v, ~) is a null geodesic with the affine parameter  v chosen 
such that a(0, ~) = p. We let a.(w, ~) denote the tangent vector of the null 
geodesic v ~ a ( v , ~ )  at the point a(w,~).  Note that a . ( 0 , ~ ) E T p  is not 
independent of ~. We may express a by means of the exponential map as 
a( v, ~ ) = eXpp[ va.(O, ~)]. 

3. T H E  NULL G E O D E S I C  S P H E R E  

We assume throughout that q is a good absolute focusing point of p. 
Let N be the null geodesic surface between p and q. Thus rE N iff there is a 
null geodesic segment "/: I --, M with ~,(0) = p, ~,(1) = q, ~,(v) v ~ q when v E 
(0, 1), and a v E  I such that 3 ' ( v ) =  r. The map a is a smooth immersion 
when v : / : 0  and a(v ,  ~) is not a conjugate point of p along v--. a(v, ~). 
Therefore, intuitively, it seems that N is an immersion of the 3-sphere which 
is smooth except at p and q where it is only continuous. This will be verified 
in the following lemmas. The first lemma shows that the affine parameters 
can be chosen such that the null geodesics correspond to longitudinal lines 
between the "poles"  p and q while the latitudinal surfaces are given by 
v = const, where v is the affine parameter.  

Lemma 3.1. The affine parameters of the null geodesics through p 
can be chosen such that a(0, ~) = p and a(1, ~) = q for all ~. 

Proof. Since a is assumed to be a smooth variation it is sufficient to 
show that the function f:  Up+--, [0 ,~) ,  which to a given null geodesic 
assigns the affine parameter  value at q, is differentiable because then one 
can use f to rescale the affine parameters smoothly by the transformation 
l) ---~ t ) / f .  

We will use the implicit function theorem in the form given in 
Dieudonn6 (1960), (10.2.2). Choose a normal neighborhood U with origin at 
q and let q0: U--, R be a normal time coordinate on U. Next choose v 0 E ] 
and ~0 E Up + such that a(v o, ~o)= q. (]  denotes the interior of I. One can 
always make a uniform rescaling of v to make q belong to the range of a, 
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i.e., v ~ Av where A is a constant on Up+.) Define G: I X Up+--, R by 4 
G ---- cpoa. Then G(v o, 40) = 0 and 

( OClav )l( vo, 40) o (1) 

since cp is a strictly increasing function along a null geodesic. Then by the 
implicit function theorem there is a neighborhood W of 40 and a smooth 
function)F: W--, R with G(f(4), 4) = 0. The function f can be identified with 
the funct ionfdef ined  above. T h u s f i s  smooth. �9 

From now on we assume that the affine parameters are chosen such 
that a(0, 4 ) = p  and a(1, 4 ) = q .  If n and s are the "poles"  of S 3, then 
S 3 - (n, s} and J X Up are diffeomorphic. Thus we can extend a[ J X Up+ to 
a map h: S 3 ~ M by defining 

h i / x  up+ x up+ (2) 

and 

h(s ) - -p ,  h(n) - -q  (3) 

Then N =  h(S3). 

Remark 3.2. The map h is locally one-to-one at n. For let U be a 
normal neighborhood of q. Then if v~ and v 2 are sufficiently near 1, h(v  I, 41) 
and h(v2,42) lie on the past light cone of q in U. Hence if h ( v ~ , 4 t ) =  
h(v2, 42) v~ q then 4~ = 42 since geodesics cannot bifurcate. But then also 
191=/) 2. 

Proposition 3.3. The map h is an immersion of the 3-sphere in M. 
Further h is differentiable except at p and q where it is continuous. 

Proof. We need only observe that h, being essentially the exponential 
map, is a local diffeomorphism (LD) except at s and at points correspond- 
ing to conjugate points to p. Then since q is the first conjugate point to p 
(along null geodesics), h is a LD except at s and n. The continuity of h and 
h -  ~ at s and n follows directly from the definition and Remark 3.2. �9 

Next we show that the variation a which represents the light cone at p 
also represents the light cone at q. This seems again rather obvious but 
nevertheless we wish to give a formal motivation. For that purpose let U be 
a normal neighborhood of q and let v 0 E J be a fixed number such that 
ct(Vo,4)~U for all 4. We define a function F: U f ~ U q  by F---- 
P o exp,-t o ao, where ct0: Up + ~ M is the function defined by 4--" ct(%, 4). 

4Strictly. G is only defined on a X(U). 
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Proposition 3.4. The variation a which represents the future light cone 
of p also represents the past light cone of q. 

Proof We show that F is a diffeomorphism onto Uq-. First we observe 
that if F is a diffeomorphism then it must necessarily be onto. This is 
because any homeomorphism of a connected space into itself is onto. We 
further note that F is one-to-one by Remark 3.2. What  is left to show is that 
F is a LD. But a 0 is a LD of Up + onto its image in M considered as a 
submanifold with the relative topology and similarly expq t and P suitably 
restricted are also LDs. Thus F is a LD. �9 

The following lemma is useful when discussing self-intersections of a. It 
will not be used in this paper. 

Lemma 3.4. If M is causal, i.e., contains no closed causal curves, 
and if q is a good absolute focusing point of p, then there are 
normal neighborhoods U of p and V of q such that N f q U =  
E+(p,U)  and N O  V = E - ( q , V )  where E+(E - )  is the horismos 
(here it is just the local light cone). 

Proof First we observe that the causality conditions imply that p 4: 
a ( v , ~ )  for v ~ ( 0 , 1 ]  and ~ E S  2. Choose c , 0 < c < l ,  such that the set 
B = {a( v, ~)10 ~< v < c, ~ ~ S 2 } is contained in a normal neighborhood W of 
p. Then N - B is a closed set and p $ N -  B. Thus there is a convex normal 
neighborhood U C W of p such that U O (N - B) = 0 .  Then N f3 U = B N U 
=E+(p ,U) ,  which shows that U is the desired neighborhood of p. An 
analogous argument for q completes the proof. �9 

4. T H E  PARTIAL CAUCHY SURFACE 

The following proposition shows that the null geodesic sphere can be 
made spacelike everywhere. 

Proposition 4.1. The null geodesic sphere can be deformed to a smooth 
immersed spacelike S 3 surface. 

Proof Let the null geodesic sphere be represented by the variation 
a(v, ~) = a: I • Up+ -, M. First we deform N at p and q to obtain a smooth 
surface. To that end remove the "caps",  {~x(v,~)[0< o < 8 )  and {a(v,~)] 
1 -  8 < v ~< 1 }, where 8 is chosen so that the caps are contained in convex 
normal neighborhoods of p and q, respectively. Let N '  denote N with the 
caps removed, i.e., N'= {a(v, ~)18 ~< v ~< 1 - 8}. Now clearly we may extend 
N' to a set IV by attaching new smooth spacelike caps which join smoothly 
to N'. Then A) is a smooth immersion of S 3. 
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Next we observe that we can define a smooth future-directed timelike 
vector field V along N '  [i.e., an assignment (v,  ~)--, V where V E T ,  c~.~) ] 
such that g(V, V) = g(V, K )  = - 1 where K is the tangent vector along the 
null geodesics. Further V can be extended to a smooth future-directed 
timelike vector field along N. Now suppose W is a subset of S 3 which 
corresponds to [ 8 , 1 - 6 ] •  + and let q~: S 3--, .~ be an immersion which 
coincides with the variation a on W. Define a deformation of N '  by a 
function 4',: W ~  M, 

4'~(P) ---- exp , (p ) ( -  v,Vo) (4) 

where p = (v,  ~ ) ~  W, V0E T, cp), and c > 0 is a parameter.  Further, there is a 
smooth real positive function on S 3 which is equal to v on W. Hence 4', may 
be extended to a smooth function on S 3 which can be regarded as a 
deformation .N which sends every point of N to the past by an amount  vc 
along the geodesic whose tangent at _N is V. 

We have to show that the surface S --  4',(S 3) is everywhere smooth and 
spacelike when c is sufficiently small. The idea is to use local tangent frames 
(R~, R2, R3) on /V, where R 1 = K on N',  and show that for small c the 
images of R n, R 2, and R 3 under 4',. are spacelike. (Strictly speaking we 
should use a tangent frame on S 3 since 4',. maps tangent vectors on S 3 to 
tangent vectors on M. However, in order not to become bogged down in 
technicalities we do not bother about this.) We define 

R ,  - -  (S) 

If s ~  N'  the coordinates (v, ~) on N '  can be naturally extended to coordi- 
nates (t, v, ~) on a neighborhood U of s using V and the exponential map. 
Then if t = 0  on N '  we have on U 

V =-- a/~t,  K =-- ~ /3v  (6) 

[ V , K ] = 0  or V v K = V K V  (7) 

g(V,V)=g(v,K)=-i (8) 

Further from (4) and (5) we see that 

R , =  K - e V  

g ( R c , R , ) = g ( K , K ) + 2 c - c  2 

(9) 

(lO) 
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Expanding g(K, K)  in t = - vc we obtain using (7) and (8), 

g( Ir K )  = ( c /2 )v2c  2 (11) 

where C is the value of V[V(g(K, K))] for some t I in [ -  vc,0]. 
Now fix c 0 > 0  and let c < c  0. Since V[V(g(K,K))] is finite when 

(t, v, ~) runs over the compact set [ -  c0,0]• 1 • Up +, it follows from (10) 
that R, is spacelike for all (v, ~) E I • Up + when c is sufficiently small. Again 
appealing to the compactness of [ -  c0,0]• I • Up+ we realize that R 2 and 
R 3 stay spacelike for all (v, ~) when mapped by ~k,. if c is small. Hence for 
small c, tk,([8, 1 - 8] • U + ) is spacelike. Further since the caps have compact 
closure the images of R~, R 2, and R 3 under q,,. are spacelike everywhere on 
the deformed caps if c is small. Thus for small c, the whole surface q~,(S 3) is 
spacelike. Finally, we note that by the compactness of S 3 the surface q,,(S 3) 
is everywhere smooth for sufficiently small c. This is because the geodesic 
congruence defined by V near a point r E IV has no caustics in a normal 
neighborhood of r. �9 

Now we make the simplifying assumption that h is a one-to-one 
immersion, or in other words that the null geodesics do not intersect except 
when v = 0 or 1. Then since S 3 is compact, h is an embedding (cf. Hawking 
and Ellis, 1973, p. 23). 

If M is simply connected we may use the following topological theorem 
(Hirsch, 1976, Theorem 4.6): 

Theorem. If M is a simply connected manifold and N C M is an 
embedded connected closed compact hypersurface, then N sep- 
arates M. 

A set A is said to be separated by B if A - B is the disjoint union of 
two open sets. Then we have the following proposition: 

Proposition 4.2. If M is simply connected and the null geodesic sphere 
N has no self-intersections, then the space-time is separated by the sphere. 

We proceed to characterize the components of M - N .  For that pur- 
pose we define the following: 

Definition 4.3. F u =-- {rE M I. There is a smooth curve ,/(v) from s E N  
to r such that ,/.Is is future directed and (s, r]y N N = O  }. 

Note. If , / ( a ) = s  and , / ( b )=  r then (s ,r]v--{ , / (v)lO<v<-I }. The set 
PN is given by the time-reversed definition. By the definition we have 
F N A N = P u N N = O .  

Lemma 4.4. The connected components of M -  N are F u and Pu. 
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Proof. F N is open since if r E  F N then since N is closed there is a convex 
normal neighborhood U of r with U fq N = O. Then any point in U can be 
joined to r by a smooth curve lying entirely in U so that U C F N. Similiarly 
PN is open. Next we observe that since M is connected it is also arc-connected. 
Further, any arc can be approximated by a smooth curve. Hence any point 
of M can be joined to N by a smooth curve. Thus F N to PN tO N = M.  The 
sets F N and PN are arc-connected and hence connected subsets of M. To see 
that, let r 1 and r 2 be points in F N and ~q(v) and •2(t)) Curves with 
~,~(0) = si E N , 3,~(1) = r, and y ~ ( v ) E F  N for v ~(0 ,1]  and i = 1 , 2 .  Let o be a 
curve in N joining sl and s 2. The curve which is the sum of - " h ,  o, and Y2 
can be deformed by pushing o slightly to the future into F N so that the 
resulting curve lies in F N and connects r~ and r 2. Thus F N is connected. 
Analogously PN is connected. Since M -  N has at least two components  by 
Theorem 4.2, F N and Pu are disjoint. I I  

Corollary 4.5. The null geodesic sphere N is achronal, that is, no 
two points of N can be joined by a timelike curve. 

Note that if h is an embedding, the deformed sphere S is also an 
embedding if c is small. Hence Proposition 4.2, Lemma 4.4, and Corollary 
4.5 all apply to the spacelike sphere S as well. 

Finally, we can now state our main theorem. 

Theorem 4.6. If M is a space-time and if there is a q ~ M which is a 
good absolute focusing point of p E M, then the space-time admits 
a compact spacelike S 3 hypersurface S. If in addition the null 
geodesics through p do not intersect before q and M is simply 
connected, then S is a partial Cauchy surface. 

5. PROSPECTS 

Although we have stated our results in terms of four-dimensional 
space-times, the same arguments can be used when d im(M) />  3. 

In Theorem 4.6 it is assumed that all future-directed null geodesics 
from a point p reconverge to a single point q. This implies a high degree of 
symmetry which the real universe does not possess. However, one would 
expect that the convergence condition could be relaxed so that the F N C L  
need not be a single point, but need only be contained in a suitably small 
set. There is another condition in Theorem 4.6 which may possibly be 
weakened, namely, the assumption that the null geodesics do not intersect 
before q. 

Finally we think that it would be of great interest to obtain results on 
the space-time structure when the FNCL is not contained in a normal 
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neighborhood. In particular one would like to know under what conditions 
the FNCL contains a closed null curve (cf. Rosquist, 1980). 
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